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Recommended Text Books 

 

No single textbook matches this course exactly, but reading parts of the 

following will be helpful: 

 C. Hammond, The Basics of Crystallography and Diffraction, III 

Ed, Oxford University Press, 2009  

This is also available as an e-book, see: 

http://www.msm.cam.ac.uk/library/ebooks_msm.php 

 A. Putnis, Introduction to Mineral Sciences, Cambridge University 

Press, 1992  

 B.D  Cullity, S.R Stock, Elements of X-Ray Diffraction, Prentice 

Hall, 2001  

 D. McKie, C. McKie, Essentials of Crystallography, Blackwell 

Scientific Publications, 1986  

 P. Goodhew, F.J. Humphreys and R. Beanland, Electron 

Microscopy and Analysis 3rd Edition, Taylor and Francis 2001.  

 D. Williams and C.B. Carter, Transmission Electron Microscopy 

Kluwer/Plenum Press, 1996 to 2004 

Other books well worth looking at are: 

Fundamentals of Materials Science and Engineering W.D. Callister 

(Wiley)   

The Structure of Materials S.M. Allen and E.C. Thomas (Wiley). 
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 Web Resources and Software 
 
The following location provides downloadable items relating to the 

course (lecture handout, practicals, questions sheets, answers) as well as 

links to material which may be of interest: 

 

http://www.msm.cam.ac.uk/teaching/partIA.php 

 

To accompany IA Materials there are complementary on-line Teaching 

and Learning Packages within the DOITPOMS web site: 

 

http://www.doitpoms.ac.uk/index.html 

 

It should be available in your College computer centres and on many PCs 

in the Department. The pages that are of particular use for this course are: 

 

Diffraction and Imaging  

Indexing Electron Diffraction Patterns  

Optical Microscopy  

Reciprocal Space  

Transmission Electron Microscopy  

X-ray Diffraction Techniques  

Atomic Scale Structure of Materials  

Crystallography  

Lattice Planes and Miller Indices  

The Stereographic Projection  

 

There is also a great deal of useful web-based teaching at the MATTER 

web site: 

 

http://matter.org.uk/ 

 

Other Websites 

Steffen Weber's homepage http://jcrystal.com/steffenweber/ 

Contains java-based applets that allow the structure of common polyhedra 

and crystals to be explored.  

Crystallography and Minerals Arranged by Crystal Form 

http://webmineral.com/crystall.shtml 

A library of 'crystal forms' - the shapes adopted by natural crystals. 

Contains Java applets.  
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EPFL host a useful web site on many aspects of crystallography: 

http://escher.epfl.ch/eCrystallography/  

Crystal Maker 

http://www.crystalmaker.com/ 

This is excellent software for visualizing crystal structures and for 

simulations of diffraction patterns. Copies to use are available on many 

Department PCs. The Department has a site licence. 

E-mail address 

Feedback on any aspect of the 1A Materials Science course may be 

directed to: PartIA@msm.cam.ac.uk 
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Introduction  

 
Materials science plays a key role in almost all aspects of modern life and 

in the technologies and equipment we rely upon as a matter of routine. 

There are many examples to choose from but one that usefully illustrates 

this is the Apple iPhone. Almost all the components have relied upon 

advances in materials science and the work of materials scientists! 

 

 

 

 

 

 

 

 

 

 

 

 

Consider some of the materials involved and their application: 

 

Display. This relies upon the combination of a liquid crystal display and 

a touch screen for communication with the device. You will hear more 

about liquid crystals later in the year. The touch screen is made from a 

conductive but transparent material, indium tin oxide, a ceramic 

conductor. 
 

ICs At the heart of the iPhone are a number of integrated circuits (ICs) 

built upon billions of individual transistors, all of which rely on precise 

control of the semiconductor material, silicon, to which has been added 

dopant atoms to change the silicon’s electronic properties. Adding just a 

few dopant atoms per million silicon atoms can change the conductivity 

many orders of magnitude! 

 

Interconnects Interconnects that provide the links between components 

are now made of copper, not aluminium, for higher speed and efficiency. 

 

Battery The battery is a modern Li-ion battery where the atomic structure 

of the electrodes is carefully controlled to enable the diffusion of the Li 

ions. 
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Wireless Microwave circuits need capacitors which are ceramic 

insulators whose structure and composition is carefully controlled to 

optimise the capacitance. 

 

Headphones. Most headphones use modern magnetic materials whose 

structure and composition has been developed to produce very strong 

permanent magnets. This is part of a transducer that turns electrical 

signals into sound.  

 

With the exception of the LCD, all these materials are solid materials.  

 

 

Classification and Terminology 

 

Traditionally states of matter were classed into 3 ‘classical’ groups: 

 

Gases   Liquids  Solids 

 

Although gases and liquids are of course important in the understanding 

of materials, in Course A we will concentrate solely on solids and in 

particular on crystalline solids. 

 

Nowadays these 3 traditional groups have been joined by other states of 

matter including for example liquid crystals which lie at the boundary 

between liquids and solids and will be discussed in other parts of the 

Materials course. 

 

Solid materials can be classified into many different types and in many 

different ways depending on whether you want to stress, for example, 

their structure or their mechanical or electrical properties. 

 

Traditionally we might talk about  

 

Metals  Ceramics  Polymers* 

 

(*You will investigate the mechanical properties of a polymer in AP0) 

 

which again are very broad descriptions and with lots of overlap, for 

example many ceramics are good conductors and thus in some sense 

could be called ‘metallic’. 
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We also talk about groups of materials stressing for example their 

electrical and magnetic properties, so we talk about 

 

Semiconductors 

Superconductors 

Hard and Soft Magnetic Materials 

Ferroelectric Materials 

 

…and so on. 

 

In addition we study solids that are crystalline (that have a crystal 

structure) and non-crystalline. 

 

A crystalline solid is one in which the atoms are arranged in a periodic 

fashion – we talk about ‘long-range order’. 

 

A non-crystalline material is non-periodic it does not have long-range 

order but can have ‘short range order’ where the local arrangement of 

atoms (and the local bonding) is approximately the same as in a crystal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

crystalline non-crystalline 
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Importance of Atomic Structure  

 

What is common to all materials is that they are composed of atoms.  

 

The properties (whether mechanical, electrical, chemical etc) of all solid 

materials are dependent upon the relative positions of the atoms in the 

solid (in other words the atomic structure of the material) and their 

mutual interaction i.e. the nature of the bonding (whether e.g. covalent, 

ionic, metallic, van der Waals). 

 

There are examples of where the atom-atom interactions is strongly 

reflected in the atomic structure. An example is diamond. Here the 

carbon-carbon interactions lead to a very directional covalent bond called 

a sp
3
 bond which has tetrahedral symmetry – this leads to an open 

structure as shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

Of course carbon can also take the form of graphite. Here the carbon 

atoms are arranged in a rather different structure and graphite has very 

different properties to diamond! 

 

In other solid systems (for example many of the metallic elements) the 

atomic structure is dictated by how well we can ‘pack’ the atoms into 3D 

space – ‘packing efficiency’ – this leads to dense close-packed structures 

as we will also discuss very shortly. 

 

So it is vital that to understand the properties of material, and to improve 

those properties for example by adding or removing atoms, we need to 

know the material’s atomic structure. 
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As Richard Feynman said: 

 

‘It would be very easy to make an analysis of any complicated chemical 

substance; all one would have to do would be to look at it and see where 

the atoms are…’  

 

taken from ‘There’s Plenty of Room at the Bottom’, Richard Feynman 

lecture, APS meeting at Caltech, 1959 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Richard Feynman 

 

So let’s start understanding materials by understanding their atomic 

structure….  
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A. Crystals and Atomic Arrangements 
 

 

A1. Historical Introduction 
 

There is a great deal of evidence in nature that many materials have some 

kind of internal order, evidence of a pattern or arrangement of underlying 

building blocks. 

 

Consider the following examples: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An array of micrographs showing the hexagonal symmetry of ice crystals 

(snowflakes) 
 

 

 

 

 

 

 

 

 

 

 

 

 

Natural quartz crystals (left) and the facetted surface of a fractured iron-

aluminium single crystal (right)  



Course A: Atomic Structure of Materials 

 

AH13 

We now know that all materials are composed of atoms and it is the 

arrangement of the atoms that leads to the external shapes we see in the 

figures above. 

 

Although Kepler (1611) was the first to discuss the 6-fold symmetry of 

the snowflake, it was Hooke (1665) who was the first to consider the 

structure of ‘crystalline’ materials in his seminal book ‘Micrographia’ – 

pictures below reproduced from his book: 
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Haüy (1784) showed how different forms (we now say ‘habits’) of dog-

tooth spar (calcite) can be described by packing together small rhombs 

which he called ‘molécules intégrantes’.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

With our current knowledge we realise that Hooke’s description was in 

essence the packing of atoms to form a crystal and Hauy was describing 

the periodic array of ‘unit cells’ – more on this later… 



Course A: Atomic Structure of Materials 

 

AH15 

A2. Packing Atoms in 2D 

 

Consider again Hooke’s picture. Apart from ‘L’, the atoms are packed in 

a 2D close-packed hexagonal arrangement. In L, the atoms are in a 

square arrangement. Note there are larger gaps (interstices) in the square 

arrangement. 

 

The efficiency of this 2D packing is easily calculated by considering the 

filling of the 2D plane with circles: 

 

Square Packing  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hexagonal Packing – see question sheet. 

square of side a 

 

circle diameter a 

a 
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A3. Packing Atoms in 3D 

 

Let’s extend this picture to 3D and consider the packing of spheres (to 

represent atoms). 

 

Consider again the close-packed hexagonal arrangement in one layer: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If we extend to 3D, the next layer of atoms could be placed directly above, 

i.e. the centre of the atoms in the next layer are also at A.  

 

The resultant crystal structure is called the simple hexagonal structure. 

(Note what defines a crystal to be hexagonal we will see later). 

 

However, no examples of elements with this structure exist in nature 

because the atoms can ‘slip’ into the ‘hollows’ or interstices between the 

atoms. This creates a more efficient packing of 3D space and is 

energetically more stable – for more on energy considerations, see course 

C. 

 

So now consider the next layer of atoms centred at the interstice B: 

A A A A 

A A A A 

A A A A 

a 

120 
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If the 3
rd

 layer atoms ‘slip’ into the interstices of the 2
nd

 layer then they 

may end up directly above the atoms of the 1
st
 layer. 

 

The stacking sequence is then ABAB and this is called the hexagonal 

close-packed (hcp) structure. Seen from the side: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c 

a 

d 

d 

A A A A 

A A A A 

A A A A 

B B B B 

B B B B 
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In the ideal hcp structure, as shown, then ad
3

2
  (see question sheet!) 

Let’s define d as the spacing between the layers (or ‘planes’) of atoms, 

then  

aadc 633.1
3

2
22   

 

Interatomic forces in real crystals cause deviations from the ideal c/a ratio 

but metals such as Be, Mg and Co have hcp structures with c/a ratio close 

to the ideal. 

 

Metal c/a ratio 

Mg 1.623 

Co 1.622 

Be 1.567 

 

But there is an alternative interstice in the 1
st
 layer – let’s label it as C. 

Atoms in the 3
rd

 layer could be placed above C and not A. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then the sequence would be ABCABC and the resultant structure is 

called the cubic close-packed (ccp) structure. What defines a ‘cubic’ 

crystal, we will see later. 

 

Why do we say the structure is cubic? It is because of the choice of unit 

cell and its symmetry – see below. 

Q 

P 

A A 

A 

A 

B 

C 

A 

A 

B 

B 

B B B 

C 
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Seen from the side, looking parallel to P and Q: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

If we rotate the crystal 45 about the axis as shown on the right above, 

then we see the following: 

 
 

 

 

 

 

 

 

 

 

 

 

 

and the cubic symmetry of the crystal structure starts to become more 

obvious. 

 

Many elements have the ccp structure including Cu, Ni and Al. 

 

 

Notes: 

 

1. Some elements have a ‘mixture’ of ccp and hcp stacking. 

 

For example: Nd and Sm have ….ABACABAC…. 

 

2. It is also possible to have ‘mistakes’ in the stacking sequence – known 

as stacking faults. 

 

 

A 

B 

C 

A 

direction P direction Q 
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For example for hcp: 

 

 

 

….ABABABABABCBCBCBCBCBC…. 

 

 

 

 

 

Stacking faults can be seen directly in the transmission electron 

microscope: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High-resolution electron microscope image showing the location of a 

stacking fault in a core-multishell ZnS nanowire 

‘ccp’ 

fault 

}
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A4. Unit Cells of the hcp and ccp Structures 

 

We need to find a way to represent the hcp and ccp structures with fewest 

number of atoms that still show the essential structure and symmetry – 

these are the unit cells. 

 

Simple Hexagonal 

 
 

 

 

 

 

 

 

 

 

 

 

 

Hexagonal Close-Packed (hcp) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

120 

a 

c 

a 

Unit Cell Angles = 90, 120 

plan view 

plan view 

a 
a 

c 

a 

a 
120 

ideal c/a =1 

a 

a 

Unit Cell Angles = 90, 120 

½ 
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Cubic Close-Packed (ccp) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Packing Efficiency of ccp and hcp structures: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assume atoms are touching in the close-packed plane (orange triangle), 

along the diagonal of the faces of the unit cell (the ‘face diagonal’): 

 

 

 

 

 

 

 

 

 

 

 

 

a 
a 

a Unit Cell Angles = 90 
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A5. Square Layers of Atoms 

 

Consider a single layer of atoms arranged in a square lattice: 
 

 

 

 

 

 

 

 

 

 

 

 

 

The next layer could be placed directly on top. This then forms the 

simple cubic structure. An example is -polonium. 

 
 

 

 

 

 

 

 

 

 

 

 

Or the next layer could ‘slip’ into the interstices, such as the one marked 

‘X’ above. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X 

a 

a 

a 

Unit Cell Angles = 90 
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The 3
rd

 layer can then placed above the 1
st
 layer: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here if we consider the unit cell as shown then the atoms of the 2
nd

 layer 

are in the centre of the cube – we call this structure body-centred cubic 

(bcc). 

 

Many metals take this structure, e.g. Cr, Mo, Ti (high temperature form), 

Fe (low temperature form). 

 

In the bcc structure the atoms are most closely packed in the diagonal 

plane with atoms touching only along the body diagonal. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Packing Efficiency of bcc – see question sheet! 
 

 

 

 

a 

a 

a 

Unit Cell 
Angles = 

90 
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A6. Interstitial Structures 

 

We’ve considered the packing of one size of atom (sphere) but we can 

also use these ideas to describe the structure of compounds with two or 

more elements. 

 

This is especially useful for compounds with dissimilar atoms sizes where 

‘small’ atoms or ions (often cations) fit into the interstices between 

‘large’ atoms or ions (often anions). As we will see there are a number of 

possible interstices to choose – which one would the atom, or ion, fit 

best? Need to invoke: 

 

Goldschmidt’s Packing principle: 

 

The number of anions surrounding a cation tends to be as large as 

possible, subject to the condition that all anions touch the cation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cation 

anion 

‘ideal’ unstable 

stable 
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Consider again the ccp structure (for clarity only some atoms are shown): 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is possible to place an atom at an interstitial site (coloured blue) which 

is at the centre of the tetrahedron formed by the 4 (black) atoms shown. 

The 4 atoms surround or co-ordinate the smaller interstitial atom at a 

tetrahedral interstice. 

 

What size of atom can be accommodated in the tetrahedral interstice? The 

limiting case, according to Goldschmidt’s Principle (the geometrically 

‘ideal’ size) would be when the large atoms and the interstitial atom all 

just touch. Therefore it depends on the ratio of the size of the two atoms: 

 

Consider large atoms (call them A atoms) have radius Ar  and interstitial 

atoms have radius Xr . 

 

For ccp structures, the A atoms touch along the face diagonal. 

¼, ¾  

interstitial site 

plan view 
½ 

½ 
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For the ideal case, atoms A and X touch along the body diagonal: 

 

 

 

 

 

 

 

 

 

 

 

Consider another possible interstitial site: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here an interstitial atom can be placed at the centre of an octahedron of  6 

atoms, hence the name octahedral interstice and the interstitial atom is 

6-fold co-ordinated. 

 

The space available in the octahedral interstitial site is larger and so can 

accommodate an atom of larger radius. What is the ‘ideal’ radius ratio? 

See question sheet! 

 

Note: Of course the interstitial spaces available in hcp are the same as ccp 

– the two structures differ only by a stacking sequence. 

interstitial site 
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The table below gives the relation between radius ratio and co-ordination 

number: 

Radius ratio 

rx  / rA 

Coordination 

number 

Type  

<0.155 2 Linear  

0.155-0.225 3 Triangular  

0.225-0.414 4 Tetrahedral 

0.414-0.732 6 Octahedral 

0.732-1.000 8 Cubic 

1.000 12 Cuboctahedral 

(Close packed) 
 

So for example if a radius ratio was calculated to be, say 0.5 then the 

interstitial atom would be accomodated in an octahedral site. However, if 

the ratio decreased to say 0.4 the atom would be in a tetrahdral site. 

 

Notice how the co-ordination number increases as the cation and anion 

radii become similar. 

 

Consider now the simple cubic structure: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The interstitial atom is placed at the centre of the cube surrounded by 8 

atoms and the site is called the cubic interstitial site.  

interstitial site 
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An example of this is CsCl with a smaller Cs
+
 ion (green) surrounded by 

larger Cl
-
 ions (purple). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Similar interstitial sites are present in bcc crystals but these are ‘distorted’ 

octahedral and tetrahedral interstices in that some A atoms will be closer 

to the interstitial atom than others in the octahedron / tetrahedron. In 

terms of calculating how well the interstitial atom will fit, it is of course 

the distance to the nearest A atom that matters! 

 

In the figure below, as an example, we show the ‘distorted’ octahedral 

sites in bcc. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

interstitial site 
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Other examples of interstitial compounds are metal hydrides, borides and 

nitrides. In these cases the ‘large’ atoms are the metal atoms: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TiN  

 

Ti ccp structure 

N in octahedral interstices 

 

6-fold co-ordination of Ti 

around N 

6-fold co-ordination of N 

around Ti. 

 

(isomorphous with NaCl) 

TiH2  

 

Ti ccp structure 

H occupy ALL tetrahedral 

interstices 

 

4-fold co-ordination of Ti 

around H 

8-fold co-ordination of H 

around Ti. 

 

(isomorphous with CaF2) 

TiH  

 

Ti ccp structure 

H occupy half the 

tetrahedral interstices 

 

4-fold co-ordination of Ti 

around H 

4-fold co-ordination of H 

around Ti 

 

(isomorphous with ZnS) 
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Representing Crystal Bonding with Co-ordination Polyhedra: 

 

Crystal structures can be represented using ball and stick models or with 

co-ordination polyhedra. Here we use BaTiO3 as an example of both: 
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B. 2D Patterns, Lattices and Symmetry 
 

In section A we took a pragmatic approach to building up the structure of 

simple crystalline materials using the close packing of atoms. 

 

To explore more complicated structures, and to describe the structures of 

crystals in a more systematic and rigorous way, we need to adopt a 

different approach. 

 

By having a more rigorous framework to describe crystals we’ll be able 

to interpret experimental diffraction patterns and determine crystal 

structures, just as Crick and Watson did in 1953! 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The famous ‘Photo 51’: X-ray diffraction pattern of sodium salt of DNA. 

B configuration. This pattern will be studied further in Question Sheet 3! 
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B1. 2D Patterns and Lattices 

 

We start in 2D and consider 2D patterns and lattices. Examples of such 

patterns can be found for example on the tiled walls of the Alhambra 

Palace in Granada: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The artist M.C. Escher was instrumental in bringing the geometry of 2D 

tiling to a wider audience (see also Question Sheet 2!): 
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Consider a regular 2D pattern composed of the letter ‘R’ repeated 

indefinitely. 
 

 

 

 

 

 

 

 

 

 

The repeating ‘unit of pattern’ is called the motif. In a crystal, the motif is 

composed of atoms. 

 

The motifs can be considered to be situated at or near the intersections of 

an (imaginary) grid. 

 

The grid is called the lattice and the intersections are called lattice points.  

 

Sometimes, it is said that ‘structure = lattice + motif’. What this really 

means is that all crystal structures can be built up by placing a motif of 

atoms at every lattice point. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R R R R 

R R R R 

R R R R 

R R R R 

R R R R 

R R R R 

unit cell 

R R R R 

R R R R 

R R R R 
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The lattice in 2D is completely specified by a statement of the repeat 

lengths a and b parallel to its x-axis and y-axis and its interaxial angle γ. 

 

In principle, there are an infinite number of ways of drawing the lattice 

but convention is to choose a lattice to give a unit cell with angles closest 

to 90. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each motif is identical and for an infinitely extended pattern, the 

environment (i.e. the spatial distribution of the surrounding motifs and 

their orientation) around each motif is identical. Leads to…. 

 

Definition of a Lattice 

 

A lattice is an infinite array of points repeated periodically throughout 

space. The view from each lattice point is the same as from any other. 

 
 

 

 

 

γ a 

b 

x 

y 
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B2. Symmetry Elements 

 

Consider: 
 

 

 

 

 

 

 

 

 

 

Here the unit cell and lattice is as before but now the motif is  

 

 

Clearly there’s an internal rotational symmetry in the motif. A rotation 

of 180 (2-fold) about an axis through the lattice point marked. 

 
 

 

The 2-fold rotation axis is called a DIAD and is represented by fi. Thus:  

 

 

 

 

Notice that additional diads are now generated in the 2D structure, at the 

mid-points between neighbouring lattice points and at the centre of the 

unit cell. 

 

Other rotation axes are possible: 

 

3-fold: TRIAD   4-fold: TETRAD  6-fold: HEXAD 
 

 

 

In addition to rotational symmetry, it is also possible to have mirror 

symmetry as part of the motif: 
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Or a combination of rotation axes and mirrors. This leads to the 10 2D 

crystallographic or plane point groups. 

 

Definitions 

 

The symmetry elements (or operators) of a finite body must pass through 

a point, taken as the centre of the body: such a group (or combination) of 

symmetry elements is known as a point group. 

 

The 10 2D crystallographic or plane point groups are illustrated below 

(taken from Hammond’s book): 
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Aside: 

 

Why not point groups with 5-fold rotation axes, or 7-fold, etc? Definitely 

possible to have for example 5-fold point group! For example the motif 

on the flag of Hong Kong: 

 
 

 

 

 

 

 

 

 

 

 

 

However, only these 10 point groups can occur in regular repeating 2D 

patterns. Patterns with 5-fold symmetry are non-repeating, non-periodic. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

If you try to fit pentagons together you get gaps! The overall pattern does 

not have 5-fold symmetry. 
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B3. 2D Lattices 
 

The need for periodic tiling of the 2D surface limits the number of 

possible 2D lattices to just 5: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 p -‘primitive’ 2D lattice – only one lattice point per unit cell 

 

 c -‘centred’ 2D lattice – two lattice points per unit cell 

 

Why not just choose a primitive cell for rectangular c? 

 
 

 

 

 

 

 

 

 

 

Indeed we can! But it does not reflect the full symmetry of the lattice – 

we choose a larger unit cell and a centred lattice because the axes joining 

the sides are at 90. 
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We are almost ready to combine the motif and the lattice but we first need 

to consider one further symmetry element called a glide line in 2D (glide 

plane in 3D). 

 

Consider a rectangular p lattice: 
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‘Macroscopic’ example of a glide line (footprints on a beach at St Kitts!): 
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B4. The 2D Plane Groups 

 

So we can now put together the 5 possible 2D lattices with the 10 

possible crystallographic 2D point groups to give all the possible 2D 

plane groups – there are 17 in total. 

 

These are shown in Appendix 1. 

 

Consider just one example here. We saw from before: 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Appendix 1:  
 

 

 

 

 

Some symmetry elements (glides, diads) are generated automatically. For 

example extra glide lines in p4mm, extra diads in p2. 
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C. Describing Crystals 
 

Before we continue with our analysis of crystallographic symmetry in 3D, 

we need to explore a convenient system to describe directions and planes 

in crystals. 

 

C1. Indexing Lattice Directions (Zone Axes) 

 

Consider a general 3D lattice with lattice points and unit cell as shown: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The unit cell has unit cell edge vectors sometimes called basis vectors: 

a, b, c (which are not necessarily orthogonal or equal). 

 

We want to write the direction OL using convenient nomenclature or 

index. 

 

(i) Co-ordinates of P are ½,0,1 

(ii) Express as a ratio of whole numbers (multiply by 2 in this case) and 

put in square brackets, i.e. [102] 

(iii) Thus [102] is the direction symbol for OL. 

 

Consider now SN, shift origin to S (or consider OM which is parallel to 

SN) and proceed as before to find SN =  011  which we say as ‘one bar-

one oh’. 
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Directions can be written in terms of the basis vectors: 

 

r102 = 1a + 0b + 2c 

 

Thus in general for a direction [uvw]: 

 

ruvw = ua + vb + wc 

 

Notes 

 

a, b, c are thus [100], [010] and [001]. 

 

When using crystallographic axes, we often talk about the a, b, c axes 

rather than x, y, z axes. 
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C2. Angles Between Lattice Vectors (Interzonal Angles) 

 

The angle between two vectors p and q is given by the dot, or scalar, 

product: 

 

p.q = pq cos  where p = p and q = q 

 

Therefore 







 

pq

qp.
cos 1  

 

Consider a unit cell with  a  b  c,    =  =  =90 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p = [u1 v1 w1]  q = [u2 v2 w2] 

 

Consider general vector [uvw], we can write: 

 

[uvw] = ua + vb + wc 

 

           = uai + vbj + wck 

 

where a = a,  b = b and  c = c 

 

i = unit vector in direction  a  

j = unit vector in direction  b  

k = unit vector in direction  c  

 

Therefore  
22
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C3. Indexing Lattice Planes – Miller Indices 

 

A lattice plane is a plane which passes through any three lattice points 

which are not in a straight line. 

 

A set of parallel lattice planes is characterised by its Miller indices (hkl).  

 

Consider again a general 3D lattice: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The routine for indexing the plane EMS is as follows: 

 

(i) write down the intercepts of the plane on the axes of the unit cell or 

unit cell vectors a, b, c.  

 

i.e. ½a, 1b, 1c 

 

expressed as fractions of the cell edge length this is ½, 1, 1 

 

(ii) Take the reciprocal of these fractions and put the whole numbers into 

round brackets:  

 

This gives (211) - this is the Miller index of plane EMS 
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Now consider the following set of planes: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What’s the index of this set of planes? 

 

Easiest way to tackle this is to move the origin to a different lattice point 

– always allowed to do this! Let’s move the origin to O keeping the 

direction of the axes the same. 

 

Intercepts (relative to O) for the first plane seen in the series are at: 

 

-1, ½, -½ 

 

Therefore the plane is  221  

 

In general a plane (hkl) will intercept the x-axis at a/h, the y-axis at b/k 

and the z-axis at c/l 
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But remember there are a set of parallel planes (hkl), so the first plane 

intercepts the x-axis at a/h, the second at 2a/h, the third at 3a/h, and so on. 

Remember also that the origin can be moved and so (hkl) is equivalent to 

( lkh ). 
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C4. Miller Indices and Lattice Directions in Cubic Crystals 

 

The positive and negative directions of the crystal axes vectors 

 

a, b, c 

 

can be expressed as  

 

[100], [ 001 ], [010], [ 010 ], [001], [ 100 ] 

 

In a cubic crystal the axes are crystallographically equivalent and 

interchangeable and may be expressed collectively as <100>, implying all 

6 variants of 1,0,0. 

 

In fact we can do this for any direction in the cubic system, so for a 

general direction <uvw> there are 48 (24 pairs) variants. For example 

consider for yourself <123>. 

 

A similar concept can be applied to Miller indices of crystal planes. The 6 

faces of a cube (with the origin at the centre) are: 

 

(100), ( 001 ), (010), ( 010 ), (001), ( 100 ) 

 

These are expressed collectively as {100}. Such a group of planes is 

sometimes known as a form. 
 

 

 

 

 

 

 

 

 

 

 

 

For a general plane {hkl} in the cubic system, there are 48 (24 pairs) 

variants. This number is sometimes known as the multiplicity and given 

the symbol mhkl. It is an important quantity when interpreting the 

intensities of powder x-ray diffraction patterns – see later.  

 

So for example the multiplicity of the {100} planes is 6, for the {111} 

planes, it is 8, and so on. 

shaded planes are 

(010), ( 010 ). 
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For a cubic system, the directions are perpendicular to planes with the 

same numerical indices. For example  

 

[110] is perpendicular to (110); 

[123] is perpendicular to (123). 

 

But this is not true in general! See below: 
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C5. Interplanar Spacings 

 

Consider the following planes: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Looking in plan view: 
 

 

 

 

 

 

 

 

 

 

 

 

 

In general, consider a plane (hkl): 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 

y 

z 

O 

A 

B 

x 

y 

z 

O 
C 

D 

(110) (220) 

C 

D 

A 

B 

d110 d220 

x 

y 

z 

O 

b/k 

a/h 

c/l 

N 

A 
 (hkl) 



Course A: Atomic Structure of Materials AH54 

There is of course a parallel plane (not shown) passing through the origin, 

O, and so the interplanar spacing is given by the length of the normal to 

the (hkl) plane, ON. 

 

Angle AON =    (angle between normal and x-axis) 

 

Angle  

 

 

 

 

 

 

 

 

 

 

Define:    as the angle between ON and the y-axis 

   as the angle between ON and the z-axis 

 

Therefore by comparing to above, we can write: 
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For orthogonal axes, using Pythagoras’ theorem, 
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Measuring Interplanar Spacings with X-Rays 

 

Recall the x-ray photograph of DNA shown on AH33 (central part 

reproduced below): 

 

 

 

 

 

 

 

 

 

 

 

 

The x-ray diffraction pattern shows a series of spots (or ‘reflections’) 

whose spacing depends upon the interplanar distances, d, in the DNA 

crystal; the relationship is given by Bragg’s Law (known also as the 

‘Bragg equation’): 

 

λ = 2d sin θ 

 

where  is the x-ray wavelength and θ is known as the Bragg angle, as 

shown below 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

You need Bragg’s Law for practical AP2. The derivation of Bragg’s Law 

will be given later – see AH76. 
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C6. Weiss Zone Law 

 

We said before that a lattice direction is sometimes called a zone axis. 

Why? What’s a zone? 

 

A zone maybe defined as a ‘set of faces or planes in a crystal whose 

intersections are all parallel’. 

 

The common direction of the intersections is called the zone axis. 

 

An illustration of this: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All intersections of planes (e.g. AB) are parallel to the z-axis. Thus the 

planes belong to a zone whose zone axis is parallel to z.  

 

The Weiss Zone Law  

 

If a lattice vector rUVW, or simply [UVW], is contained in a plane of the set 

(hkl), there is a relationship that links the lattice vector to the lattice 

planes: 

 

 

hU + kV + lW = 0 

 
 

 

 

 

 

Note: Proof of the Weiss Zone Law given in Appendix 4. 
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In general we may wish to find the direction vector [UVW] which is 

common to the planes (h1k1l1) and (h2k2l2). We need to solve 2 

simultaneous equations: 

 

h1U + k1V + l1W = 0 

 

h2U + k2V + l2W = 0 

 

Solutions are: 

 

 

U=  k1l2 - l1k2 

 

V=  l1h2 – l2h1 

 

W=  h1k2 – h2k1 
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D. Lattices and Crystal Systems in 3D 
 

We can now continue with our exploration of crystals in 3D armed with a 

method to describe directions and planes. 

 

Recall that we had 5 possible lattices in 2D. Taking one of those lattices 

and stacking ‘layers’ on top of each other it is possible to build up all the 

possible 3D lattices. 

 

Doing this we find that there are 14 crystallographically distinct 3D space 

lattices, called Bravais lattices.  

 

The unit cells of the Bravais lattices are shown below, grouped into the 7 

distinct crystal systems (or crystal classes). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note we have primitive (P), body-centred (I), face-centred (F) and 

base-centred (C) lattices. There is also a rhombohedral (R) lattice. 



Course A: Atomic Structure of Materials 

 

AH59 

 

Crystal System Defining Symmetry 

(rotation or 

inversion) 

Conventional Unit 

Cell 

Conventional 

Lattice 

Types 

Cubic 4 triads a = b = c 

α = β = γ = 90° 
P, I, F 

Hexagonal 1 hexad  a = b ≠ c 

α = β = 90°, γ = 120° 
P 

Trigonal  1 triad a = b ≠ c 

α = β = 90°, γ = 120° 
P, R 

Tetragonal 1 tetrad a = b ≠ c 

α = β = γ = 90° 
P, I 

Orthorhombic 3 diads a ≠ b ≠ c 

 α = β = γ = 90° 
P, C, I, F 

Monoclinic 1 diad  a ≠ b ≠ c 

α = γ = 90°, β ≥ 90° 
P, C 

Triclinic - a ≠ b ≠ c 

α ≠ β ≠ γ 

P 

 

The different shapes and sizes of these cells may be described in terms of 

three cell edge lengths a, b, c or lattice vectors a, b, c, and the angles 

between them , , . 
 

Note, by convention:  is the angle between b and c 

 

     is the angle between a and c 

 

     is the angle between a and b 

 

But what defines something as being say‘cubic’, or ‘tetragonal’. It is not 

the shape of the unit cell but the symmetry of the crystal. 

 

For a crystal to belong to a particular system it must have a characteristic 

(minimum) symmetry. For example 

 

Cubic  four 3-fold axes (triads) parallel to the <111> axes 

 

Tetragonal one 4-fold axis (tetrad) parallel to the c-axis, the [001] axis. 

   

Of course the empty lattice can have a higher symmetry than the crystal – 

it depends on the position of atoms in the motif. For example there are 

cubic crystals without 4-fold symmetry but whose unit cell has 

orthogonal sides of equal length (i.e. a cube).  
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Centred Lattices 

 

We saw in 2D the possibility of a centred lattice. In 3D there are also 

centred lattices as well as the primitive lattice (P): 

 

P lattice primitive lattice  1 lattice points / unit cell 

 

I lattice body-centred lattice 2 lattice points / unit cell 

 

F lattice face-centred lattice  4 lattice points / unit cell 

 

C lattice base-centred lattice 2 lattice points / unit cell 

 

(The last is called a C-centred lattice because the extra lattice point is in 

the a-b face. It is possible to have A-centred and B-centred lattices but 

these are non-conventional.) 

 

We can always construct a primitive cell from the centred lattice. For 

example consider below (a) the cubic I and (b) cubic F lattices: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, as in 2D, these 3D primitive cells are not often used because: 

 

(i) The inter-axial angles are not the convenient 90(i.e. they are not 

orthogonal) 

 

(ii) They do not reveal very clearly the cubic symmetry of the cubic I or 

cubic F lattice. 
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Close Packed Structures Revisited 

 

The ccp structure has a cubic F lattice with one atom in the motif at 0,0,0. 

 

The bcc structure has a cubic I lattice with one atom in the motif at 0,0,0. 

 

The hcp structure has a hexagonal P lattice with two atoms in the motif at 

0,0,0 and 
2
/3, 

1
/3, 

1
/2 . 

 

 

Trigonal System 

 

Some crystals with a hexagonal lattice (e.g. quartz) do not show 

hexagonal symmetry (i.e. they do not have 6-fold rotational symmetry) 

but have only 3-fold symmetry. As such, these crystals must be assigned 

to the trigonal system. 

 

Hence the trigonal system includes crystals with both hexagonal and 

rhombohedral Bravais lattices. 
 

 

 

 

 

 

 

 

 

 

 

-quartz (SiO2) 
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E. Crystal Symmetry in 3D 
 

In 2D we found that by combining symmetry elements we could 

determine 10 distinct crystallographic point groups. 

 

In 3D we find that there are 32 distinct crystallographic point groups. 

However to describe these we need to discuss two other symmetry 

elements that exist only in 3D (not in 2D). 

 

E1. Centres of Symmtery and Roto-Inversion Axes 

 

If a crystal possesses a centre of symmetry, then any line passing 

through the centre of the crystal connects equivalent faces, or atoms, or 

molecules. 

 

In other words, if an atom is located in the crystal at (x, y, z) then the 

same atom must be located at (-x, -y, -z). 
 

 

 

 

 

 

 

 

 

The origin O is called a centre of symmetry (or inversion centre) and a 

crystal possessing a centre of symmetry is said to be centrosymmetric. 

 

If a crystal does not posess a centre of symmetry, then it is said to be non-

centrosymmetric. 

 

Consider how a centre of symmetry operates on a more complex object: 
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An everyday example of a centre of symmetry (inversion centre) is seen 

in the figure below (c.f. with the mirror): 
 

 

 

 

 

 

 

 

 

 

 

Consider again the previous figure, we can imagine the atoms at  r 

sitting on the surface of a sphere of radius r and the centre of symmetry 

then being at the centre of the sphere. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus the stereographic projection shown above represents a centre of 

symmetry (inversion centre).  

 

It is given the symbol 1  and is marked on the stereographic projection as 

a small circle    

 

NOTE: In this course we use the stereographic projection only as a 

pictorial device. However, it can be used quantitatively, for interest only 

see: http://www.doitpoms.ac.uk/tlplib/stereographic/index.php 

+r 

-r 

N 

S 

Stereographic Projection 

 

Project object in northern hemisphere as   

 

Project object in southern hemisphere as   

inversion centre mirror 
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Can we combine centres of symmetry with rotation axes? Yes! They are 

called roto-inversion axes. 

 

For example using our stereographic projection we can first represent a 4-

fold axis (with the rotation axis pointing up): 
 

 

 

 

 

 

 

 

 

 

Now combine this 4-fold rotation axis with an inversion centre to produce 

a 4-fold roto-inversion axis. This is given the symbol 4 and the operation 

is: 

 

(i) rotate by 90 (i.e. 360/4) 

(ii) invert through the centre 

 
 

 

 

 

 

 

 

 

 

As before the roto-inversion axis is pointing up. 

 

We can also have 3  and 6  symmetry axes. 

 

What about 2 ? It is a horizontal mirror! Therefore 2   m . 
 

 

 

 

 

 

 

 

 

90 

4 

≤ 

Notice that contained within the 4  

symmetry element is a 2-fold rotation axis. 

Hence the symbol is ≤ showing the 

‘automatic’ presence of fi. 
 

− 
bold to indicate a horizontal mirror 
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So actually we can say also that a centre of symmetry is also a roto-

inversion axis 1 where the operation is to rotate by 360/1 and invert 

through the centre. 

 
 

Examples of roto-inversion axes 
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E2. Crystallographic Point Groups 

 

(Note: This section is for background only – non-examinable.) 

 

Just as we did in 2D, we can combine symmetry elements to establish all 

the possible crystallographic point groups. 

 

In Appendix 2, we list all the 32 possible crystallographic point groups 

showing the international symbol and a representative stereographic 

projection. 

 

As an example consider the tetragonal point group m24 : 
 

 

 

 

 

 

 

 

 

 

 

 

‘ 4 ’ indicates a 4  roto-inversion axis parallel to the tetragonal c-axis 

shown pointing up from the page. 

 

‘2’ indicates a 2-fold axis (diad) perpendicular to the 4  axis (i.e. parallel 

to both the a-axis and b-axis. 

 

‘m’ indicates mirrors at 45 to the 2-fold axis, i.e. mirror planes whose 

normals are parallel to [110] and [ 1 10]. 

 

Note. The mirrors are generated automatically from the 4  and 2 

symmetry operations. 
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E3. Crystal Symmetry and Properties 

 

The symmetry of a crystal is of paramount importance in understanding 

physical properties. 

 

In general, the arrangement of atoms within a crystal means that the 

crystal properties vary with direction, i.e. they are anisotropic. 

 

(i) Electrical Conductvity 

 

A simple and well-known example is the electrical conductivity of 

graphite, which has a highly layered crystal structure, whose conductivity 

in the hexagonal basal plane is much higher than that perpendicular to the 

planes. 

 

(ii) Pyroelectricity and Ferroelectricity 

 

Some crystals have an internal polarization brough about by the 

arrangement of positive and negative ions, forming an electric dipole. 

The total polarization per unit volume of the crystal is the sum of all these 

internal electric dipoles. However, the dipole must lie along a unique 

direction (not repeated by a symmetry element) and there are only 10 

point groups with this property (knows as the 10 polar point groups). 

 

Of course the polar point groups cannot have a centre of symmetry (they 

are all non-centrosymmetric) as this would cancel out the dipole. 

 

(iii) Optical Properties 

 

For example, the refractive index is symmetry-dependent: tetragonal, 

hexagonal and trigonal crystals are characterized by 2 refractive indices 

and leads to the phenomenon of birefringence (e.g. as seen in calcite). 
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(iv) Enantiomorphism (Chirality) 

 

Many molecules are chiral (they can be right-handed or left-handed), e.g. 

DNA in nature (the B-form) is always right-handed. When crystallized 

these molecular crystals have chiral symmetry. Aspargine occurs in two 

enantiomorphous forms, one tastes bitter, the other sweet! 

 

Optical activity of a crystal is where the vibrational direction of light 

rotates such that it propagates through the crystal in a helical manner 

either to the right (dextro-rotatory) or the left (laevo-rotatory) – this 

phenomenon occurs only in crystals that are enantiomorphous. 
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E4. Translational Symmetry Elements 

 

In 2D we introduced glide lines as translational symmetry elements, in 

3D these become glide planes but act in the same way. 

 

Glide planes are symbolized as a, b or c glides depending on whether the 

translation is parallel to the x, y or z axis. 

 

(Note. Non-examinable: There are also n (‘diagonal’) and d (‘diamond’) 

glides involving translations along more than one axis.) 

 

Screw axes are combinations of rotations and translations and are 

represented by the general symbol Rn where R represents the rotation and 

n represents the number of translations for one complete rotation of a 

helix. 

 

For example, the 21 screw axis is a rotation of 180 followed by a 

translation of ½ of the repeat distance. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note the horizontal line is simply a guide to the eye, representing an axis, 

and is not representing a mirror. 

 

Another example is the 41 screw axis: 
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The complete set of possible screw axes is shown in the figure below 

(fractions indicate height up the screw axis as a fraction of the repeat 

distance). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example -quartz (enantiomorphous) 

 

SiO2 units are arranged along the c-axis in either a 31 or 32 screw 

orientation. This gives rise to optical activity. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
left-handed 32 right-handed 31 
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E5. Space Groups 

 

Finally, by combining the 14 Bravais lattices with the 32 point groups 

and translational symmetry elements, it can be shown that there are 230 

possible 3D patterns or space groups. 

 

A full description of the space groups would take too long (outside the 

scope of this lecture course!) but the space groups are tabulated in all 

their glory in the International Tables for Crystallography, Volume A. 
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F. Introduction to Diffraction 
 

How do we discover the internal arrangements of atoms in a crystal? 

 

Some crystals, especially minerals, give clues as to their internal 

symmetry through their external shape, or crystal habit.  

 

However, to really determine the atomic arrangement we need a ‘probe’ 

that penetrates the crystal and interacts with the atoms. X-rays, neutrons 

and electrons are all used to probe the atomic arrangement of crystals. 

The incoming radiation is scattered from the atoms and interferes 

constructively only at special scattering angles, and these angles can be 

related back to the lattice planes of the crystal. 

 

 

F1. Interference and Diffraction 

 

To explore this further, let’s start by reviewing some basic ideas of 

diffraction and interference. 

 

Consider a wave with uniform planar wavefront impinging on a single slit 

in an otherwise impenetrable barrier: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The slit acts as a secondary source producing a circular (spherical in 3D) 

wavefront.  
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If we have two slits: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We now have 2 spherical wavefronts which will interfere to produce an 

interference pattern at some detector a distance from the slits. 

 

The interference will be a series of intensity maxima and minima - e.g. a 

series of bright and dark fringes if light is used. The fringes tend to fade 

in intensity as you go away from the central maximum because the 

interference pattern is modulated by the diffraction from each slit. 

 

This is Thomas Young’s famous experiment of 1803 to explain the wave 

theory of light. Importantly, Young found that the spacing between a 

maximum on the detector and the centre of the pattern, x was proportional 

to the reciprocal of the separation between the slits, d – see AP8.  

 

If we add a 3
rd

 and then more slits, tending towards an infinite number of 

slits, the maxima become very sharp, tending towards delta functions: 
 

 

 

 

 

 

 

 

 

For very fine slit widths the envelope function becomes much broader 

and so for a series of slits (tending towards an infinite number) which are 

very narrow in width (tending to zero) then the diffraction pattern 

becomes: 

1 slit 2 slits 3 slits 5 slits 

max 

max 

max 

min 

min 

d 

x 
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Essentially we have destructive interference (zero intensity) everywhere 

EXCEPT at special positions on the detector, corresponding to special 

scattering angles, where we get maximum constructive interference (i.e 

where the wavefronts match identically and the path difference, Δ = nλ. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 0 1 2 3 4 5 6 

… … 

‘order of reflection’ 
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Quick reminder about interference: 
 

 

 

 

 

 

 

 

 

Consider adding two waves with the same amplitude and 

frequency/wavelength but different phases. In general you will get partial 

constructive/destructive interference, but there are two special cases: 
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Case 1 
 

Δ = nλ 
 

n is a integer 

x 

 

λ is the wavelength  
 

Δ is the path 
difference 

Case 2 
 

Δ = (n+½)λ 
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F2. Bragg’s Law 

 

We can now make the analogy between an infinite array of slits and our 

crystal lattice composed of an infinite array of lattice planes. 

 

The spacing between the slits is analogous to the spacing between crystal 

planes. 

 

Consider the scattering of x-rays from a series of lattice planes. 

(Geometry for x-ray diffraction explained further in AP5 and section H.) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We will see a sharp peak (maximum constructive interference) at a 

special scattering angle, 2θ which must arise only because the path 

difference between waves (1) and (2) is equal to nλ. 

 

Consider the geometry: 

 

path difference, p.d. = nλ = AB + BC 

 

AB = BC = d sin θ 

 

 nλ = 2d sin θ 

θ 
2θ 

sharp peak of 
scattered intensity 

0 

x-ray 

crystal 

θ θ 
d 

θ 

θ θ 

θ A 

B 

C 

d 

(1) 

(2) 
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This leads to Bragg’s Law: 

 

λ = 2d sin θ 

 

Note: θ is known as the Bragg angle and is sometimes given the symbol 

θB. 

 

Where’s n ?! It’s ‘hidden’ in d. 

 

 

1
st
 order reflection  d = d100 

 

2
nd

 order reflection  d = d200 = 
2

100d
 

nth order reflection  d = dn00 = 
n

d100
 

 

 

 

 

 

 

 

 

 

 

 

 

Thus in a diffraction experiment (see for example practical AP2, AP3), by 

knowing the wavelength of radiation and measuring the Bragg angle, the 

crystal planar spacing can be found. 

 

For a real (3D) crystal, the lattice is a 3D array and so we need to 

consider scattering from not just a 1D array of slits or a single array of 

lattice planes but a 2D or 3D array of lattice planes. 

 

The same analysis (Bragg’s Law) can be used and we will see an array of 

maxima, e.g. an array of intense spots on a 2D detector. For example, the 

x-ray (left)and electron diffraction (right) patterns in the figure below: 

 

 

 

(100) planes (200) planes 
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We see a ‘lattice’ of Bragg ‘reflections’ whose spacing is determined by 

the reciprocal of the crystal lattice spacing. 

 

If a reflection has arisen from a plane (hkl) then the reflection is known as 

the hkl reflection. 

 

The lattice of reflections corresponds directly to the crystal’s reciprocal 

lattice – see later. 
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F3. The Intensities of Bragg Reflections 

 

Using Bragg’s Law (and the Ewald sphere construction – see later) we 

can understand the spacing of the reflections in a diffraction pattern – but 

what about the intensities of each reflection which, as we saw in the 

diffraction patterns above, can vary dramatically from one reflection to 

another. 

 

To understand that variation we need to consider how waves scatter from 

the arrangement of atoms in a crystal. 

 

First consider how waves e.g. x-rays, scatter from a single atom: 
 

 

 

 

 

 

 

 

 

 

If we look at the amplitude of scattering on the detector we would see: 
 

 

 

 

 

 

 

 

 

 

This scattering amplitude, known as the x-ray atomic form factor (or 

atomic scattering factor), and given the symbol f is conventionally 

plotted as a function of both angle, θ and wavelength, λ. 

 

Qualitatively this is similar to the trace seen for diffraction from a single 

slit, see for example at the bottom of page 72.  

 

We can define the atomic form factor as: 

 

 

 

 

 

0 
x-ray 

0 

scattering angle 

   f   =   atomic form factor    =          amplitude of scattering by atom 

         amplitude of scattering by a single electron 

 

atom 

detector 
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X-rays scatter almost exclusively from the atomic electrons and so f is 

primarily the contribution of all the electrons in the atom. For an atom of 

atomic number Z, there are Z electrons. 

 

At zero scattering angle, all these Z electrons scatter in phase and so f = Z. 

 

As the scattering angle increases, there is only partial constructive 

interference and f falls below the value of Z. 

 

Below is a figure plotting f as a function of sinθ/λ: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If we now consider scattering from two atoms, do we simply add their 

individual form factors? Not quite. We have to consider their relative 

positions – just like in the 2-slit experiment before. 

 

Consider a part of a crystal lattice with atoms A situated at the lattice 

points. These atoms have atomic form factors fA. 
 

 

 

 

 

 

 

 

 

 

 

Calculated X-ray atomic 

form factors: 

oxygen (blue) 

chlorine (green) 

Cl
-
 (magenta) 

K
+
 (red). 
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K
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θ θ 

d100 
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If x-rays are incident on the crystal at the Bragg angle θ for the (100) 

planes then we know that all the waves scattered from each atom A will 

be in phase (because each atom A is at a lattice point), we will get 

constructive interference and we will detect a corresponding diffracted 

spot in a diffraction pattern. 
 

Let’s now add a second atom B, with scattering factor factor fB, to the 

motif: 

 

 
 

 

 

 

 

 

 

 

 

 

 

The position vector r1 links atoms A and B and can be written in general 

as: 

 

r1 = x1a + y1b + z1c 

 

where x1, y1 and z1 are fractions of the cell edge length. 

 

How will the addition of this atom B affect the scattering? Need to 

consider the path difference between waves scattered by A and by B.  

 

Consider: 
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We need to determine, for scattering from (100) lattice planes, what is the 

path difference between waves scattered from A and from B. 

 

We can show (exercise for the student!) that: 

 

path difference, p.d. = AD-BC = 2AB cosψ sinθ 

 

but AB cosψ = x1d100 

 

and p.d. = 2x1d100 sinθ 
 

but Bragg’s Law is λ = 2d sin θ  

 

p.d. = 1x  

 

phase difference = 


2
path difference 

 

= 12 x  

 

In this case, θ is the Bragg angle for d100. For a more general case of (h00) 

planes, then: 

 

x1d100  x1hdh00 

 

phase difference = 12 hx  

 

If another atom was added with co-ordinates x2, y2, z2 then this would 

give rise to a phase difference of 22 hx , etc. 

 

Similar analysis can be done for the other two dimensions so that in 

general for scattering from planes (hkl) each atom at position xn, yn, zn 

leads to a phase difference of: 

 

)(2 nnnn lzkyhx    

 

Note: n is a phase angle. 

 

So how do we add waves of different amplitude and phase? We can use 

an amplitude-phase diagram (!) sometimes called a ‘vector-phase 

‘diagram. 
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Let’s consider again atoms A and B in our motif. If these are the only 

atoms in our unit cell then we simply need to add the contributions from 

A and B to know the scattering from the whole crystal (as each unit cell is 

identical). 

 

Atom A is at the origin, so: 

 

(x, y, z) = (0, 0, 0) and A = 0 

 

Atom B is at position x1, y1, z1 and so  

 

)(2 111 lzkyhxB    

 

Amplitude of scattering from A = fA 

 

Amplitude of scattering from B = fB 

 

We can use this information to draw an amplitude-phase diagram. 

 

Let’s assume that fA > fB 
 

 

 

 

 

 

 

 

 

 

 

 

The resultant vector on this diagram Fhkl is known as the structure factor 

and is the sum of all the atomic form factors fn taking into account the 

relative phase factors n. 

 

So if we had for example 5 atoms in the unit cell: 

 

A, B, C, D, E with scattering amplitude fA, fB, fC, fD, fE, phase angle A, B, 

C, D, E 

 

 

 

Fhkl 

fA 

fB 

B  
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Let’s put atom A at the origin as before, so that A = 0: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note the phase angles, n are all measured with respect to the origin 

(horizontal line). 

 

The length or modulus of the vector Fhkl represents the resultant 

amplitude of the scattered beam and the angle Φ is the resultant phase 

angle. 

 

Such diagrams are equivalent to Argand diagrams when the structure 

factor Fhkl is represented by a complex number. Consider a vector f: 

 
 

 

 

 

 

 

 

 

 

 

 

 

The axis marked with the curly R () is known as the real axis and with 

a curly I () is the imaginary axis. 
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Thus we can write: 

 

)sin(cos  if f  

 

but  sincos iei   

 


ifef  

 

and so the structure factor can be written as: 

    



N

n

nnnnnnnhkl lzkyhxilzkyhxf
1

2sin2cos F  

 

or   



N

n

nnnnhkl lzkyhxif
1

2exp F  

 

The diffracted intensities Ihkl are proportional to 
2

hklF = 
*

. hklhkl FF  

 
2)(2*2

.. FeFeFeF i

hkl

i

hkl

i

hklhklhklhkl   
FFF  

 

Therefore: 

 

   
2

1

2

1

2
2sin2cos


















 


N
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n
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Centre of Symmetry 

 

Consider again our 2-atom motif but now make atom B the same as atom 

A. if we also move the origin to be mid-way between the two atoms then 

the origin is lying at a centre of symmetry. 
 

 

 

 

 

 

 

 

 

 

 

A (x, y, z) 

O 

A (-x, -y, -z) 
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Now we have an atom at (x, y, z) and an identical atom at (-x, -y, -z). 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example of CsCl 

 

 

 

 

 

 

 

   2
1

2
1

2
12exp02exp lkhifif CsClhkl  F  

 

 lkhiff CsClhkl  expF  

 

Thus   for h + k + l = even     1exp  lkhi  

 

for h + k + l = odd     1exp  lkhi  

 

Thus   for h + k + l = even   CsClhkl ff F  

 

  for h + k + l = odd   CsClhkl ff F  

fA 

 

 

 

- 

fA 

Fhkl 

Notice that Fhkl is real. 

P lattice with motif: 

 

Cl (0,0,0) 

Cs (½, ½, ½) 
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In terms of an Argand diagram: 

 

h + k + l = even 

 
 

 

 

 

 

 

 

h + k + l = odd 

 
 

 

 

 

 

 

 

Thus in a diffraction pattern we would expect to see alternating strong (S) 

and weak (W) reflections: 
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W  S   W  S 

Electron diffraction 

pattern of CsCl parallel 

to the <100> zone axis 
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G. The Reciprocal Lattice 
 

The concept of the reciprocal lattice is a very simple one yet is 

remarkably powerful in helping to interpret the scattering seen in 

diffraction patterns. 

 

The reciprocal lattice can be defined in a purely mathematical approach 

which though elegant and rigorous does not perhaps emphasize the 

connection between the reciprocal lattice vectors and the crystal planes 

– this is what we will do here. 

 

We saw before that in the diffraction from a series of slits (grating) we 

recorded a series of spots whose spacing was proportional to the 

reciprocal of the slit spacing. An analogy was made with planar spacings 

in a crystal. 

 

Consider again a series of crystal planes: 
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*

1d  

normal to 
plane (1) 

length of vector =
1d

1
= *

1d  
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*
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*

2d  

*

3d  

length of vector =
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1
= *

2d  

d3 
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A third set of planes (3) can be constructed automatically from the first 

two sets, and in reciprocal space this means that 
*

3d  is a vector sum of 
*

1d  

and 
*

2d , i.e. 

 
*

2

*

1

*

3 ddd   

 

We can continue and construct an infinite reciprocal lattice composed of 

reciprocal lattice vectors. 

 

Consider a primitive monoclinic lattice viewed parallel to [010]: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  

*

100

*
da   

100

* 1

d
a   

*

001

*
dc   

001

* 1

d
c  

 
*a  and 

*c  are in general not parallel to a and c. 

 

β* is the complement of β (i.e. β* =180° - β) 

 

For this monoclinic cell, the 3
rd

 axis b of the unit cell is pointing up 

perpendicular to the page and therefore 
*b is perpendicular to both 

*a  and 
*c  and in this case the next layer of the reciprocal lattice will lie directly 

above the layer containing the origin, O, known as the zero layer. 

 

β a 

c 

d100 

d001 

b 

c* 

a* 

β* 

b* 

Real Space Reciprocal Space 
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Note: For the most general case, a triclinic crystal, that first layer up 

would be displaced. Looking in reciprocal space in the same direction as 

before: 
 

 

 

 

 

 

 

 

 

 

Any reciprocal lattice vector 
*d  can be written in terms of the 3 

reciprocal lattice vectors 
*a , 

*b  and 
*c . 

 

For example, consider the planes (102): 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can write: 
******

102 2201 cacbad   

or in general, 
****

cbad lkhhkl   
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The reciprocal lattice points are indexed hkl with no brackets: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the case of this monoclinic cell, directly above this section, or zero 

layer, at a height equal to
**

100 bd  , is the h1l section, or first layer: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h0l 

section 

010 

h1l section 

011 

012 

101  

110 
111 

112 

111  

111  

210 
211 

212 

121  

101  
111  

121  



Course A: Atomic Structure of Materials AH92 

 

We can draw in perspective the primitive monoclinic reciprocal lattice 

unit cell as: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primitive real space lattices   primitive reciprocal space lattices. 

Centred real space lattices   centred reciprocal space lattices. 

 

Consider an orthorhombic C lattice looking down the c-axis: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the lattice planes perpendicular to the x-axis. Moving in the x-

direction from the origin the first set of lattice planes encountered is not 

the (100) but the (200) and so the first reciprocal lattice vector in the x-

direction must be 
*

200d  and not 
*

100d . 

 

Likewise in the y-direction, the (020) planes are encountered first and so 

the first reciprocal lattice vector in the y-direction must be 
*

020d . 

β* c* 
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Moving in the direction P perpendicular to the (110) planes, the first 

plane encountered is the (110) plane and so in this direction the first 

reciprocal lattice vector is 
*

110d . Thus: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus for such a C-centred lattice, a mesh of reciprocal lattice points are 

absent (marked above with a ) and only those with h + k = 2n (n integer) 

are allowed. 

 

Remember the absent reciprocal lattice points are absent because of our 

choice of a non-primitive real space lattice. 

 

Let’s look at the important case of cubic crystals. 

 

Consider an I-centred cubic real space lattice: 
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Again, we will have absent reciprocal lattice points because of our choice 

of non-primitive real space lattice: 
 

Look in projection down the z-axis in real space: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the x-direction, we have a similar situation to that of the C-centred 

orthorhombic cell and so in reciprocal space, the 100, 300, etc reciprocal 

lattice points will be absent. 

 

The cubic symmetry means that this must be true in the y and z directions 

also. 

 

In the [110] direction, the first set of planes encountered is the (110) so 

that 
*

110d  is allowed in reciprocal space. So we find in reciprocal space: 
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Thus we have a ‘face-centred’ reciprocal lattice in this section and this is 

repeated in the other sections to give a face-centred cubic reciprocal 

lattice.  

 

For a face-centred F lattice in real space we find a body-centred I lattice 

in reciprocal space. 

 

(This reciprocal relationship is true also for F and I lattices in other 

crystal systems.) 

 

We can construct a table illustrating which reciprocal lattice points are 

absent or not depending on the lattice chosen: 

 

Lattice Type Condition for Presence 

P none 

I h + k + l= 2n 

C h + k = 2n 

F h, k, l all odd or all even 

 

Note: The presence of symmetry elements such as glide planes, screw 

axes may also lead to ‘missing’ reflections in reciprocal space. 
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H. The Geometry of X-ray Diffraction 
 

H1. The Ewald Sphere 

 

We found by analysis of scattering using a real space model that: 

 

λ = 2d sin θ  Bragg’s Law 

 

Now that we have knowledge of reciprocal space can we describe 

Bragg’s Law in reciprocal space? 

 

[   Note that we can write: 

 



sin

2

1


d
 or 


sin

1

2

1 * d    ] 

 

Consider: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Incoming wavevector:  

 

 

 

Outgoing wavevector:  

 

 

Reciprocal lattice vector for the (100) planes as shown:  

 

We can put this all together on our reciprocal lattice for this crystal: 

1/λ 
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Consider radiation to be x-rays 

of wavelength λ. 

 

We can represent the x-rays in 

reciprocal space by a 

wavevector whose length is 

equal to 


1
 

d010 
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The angle between the incoming and outgoing wavevectors = 2θ 

 

Thus from the diagram, simple trigonometry gives: 

 




sin
1

2

1 * d  

 

Of course  
d

d
1*    



sin

2

1


d
   λ = 2d sin θ 

 

The wavectors are often given the symbol k for the incoming wave and k 

for the outgoing wave and so: 

 

k - k = d* 

 

This is simply Bragg’s Law expressed in reciprocal space and we would 

say that the 100 reflection is at the ‘Bragg condition’. No other reflection 

satisfies the condition and so no other planes will scatter radiation to give 

constructive interference.  

 

The wavevectors k and k lie on a circle (sphere in 3D) of radius 1/λ, 

called the Ewald sphere. 

 

For the Bragg condition to be satisfied for a reflection hkl the Ewald 

sphere must pass exactly through the reflection hkl. 

 

The Ewald sphere always passes through the origin of reciprocal space.  
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This construction is extremely useful in understanding which reflections 

we will detect in a diffraction experiment.  

 

For example if we keep the incoming radiation fixed, and rotate the 

crystal, we will eventually find an angle where the Ewald sphere will 

intercept another reciprocal lattice point and thus we will detect that 

reflection in our diffraction experiment: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this mode, we will therefore only see one reflection at a time. 

 

If the detector is ‘left on’ continuously and we rotate the crystal then we 

will detect more and more reflections within the geometry of the Ewald 

sphere – this is the basis of the oscillation, rotation and precession  

methods of single crystal x-ray diffraction – these are known as fixed λ 

varying θ methods. 
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H2. Single Crystal X-ray Diffractometry 

 

We rotate the crystal about a defined axis and monitor the diffracted x-

rays in a ring around the axis. Only planes whose normals are 

perpendicular to the rotation axis will be detected. 

 

Consider: 

 
 

 

 

 

 

 

 

 

 

 

 

 

Remember that crystal planes with smaller interplanar distances have 

larger Bragg angles, θ. 

 

2-Circle Diffractometer 
 

This is the type of diffractometer used in AP2 and AP3 and is explained 

in more detail in those practicals. 
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4 –circle Diffractometer 

 

The crystal can now be rotated about 3 different axes: , , . The 

detector moves around 2θ. 

 

Positions and intensities of all reflections can be recorded. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If we use ‘white radiation’ with a range of wavelengths (indicated by the 

shaded portion below) then many reflections will be recorded at once 

with reciprocal lattice points being intercepted by Ewald spheres of 

different radius (1/λ) – see example in Question Sheet 4. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This technique is called the Laue technique and recorded patterns are 

known as Laue patterns. This is a fixed θ varying λ method. 
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H3. X-ray Powder Diffractometry 

 

Many samples cannot be grown in single crystal form with sufficient size 

for single crystal x-ray diffraction. Instead, we can examine the sample in 

powder form. If the powder is finely ground such that individual 

crystallites are likely to be found at all orientations then powder x-ray 

diffractometry can be applied. (Note: if some orientations are preferred 

this is known as ‘texture’ and the powder diffraction requires a different 

analysis.) 

 

In modern diffractometers the powder is pressed into a thin uniform layer 

onto a substrate and mounted in a θ - 2θ 2-circle diffractometer; this is 

sensitive only to the interplanar spacing dhkl and not the orientation of the 

plane. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The use of slits at the source and detector plus the use of this so-called 

‘Bragg-Brentano’ geometry ensures that the angular resolution of the 

diffractometer trace is high. An example from SiO2 is shown below: 
 

 

 

 

 

 

 

 

 

 

 

 

The diffracted intensity of a peak in a powder x-ray diffraction trace is 

proportional to mhkl

*
. hklhkl FF where mhkl is the multiplicity and takes into 

account the symmetry equivalence of {hkl} planes. 
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2θ 

slit 
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detector 
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away from the 

source 
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Note. Depending on the diffractometer used, there may be additional 

geometric factors that change the relative intensities of the peaks. 

 

X-ray powder diffraction of cubic crystals (see also AP3) 

 

 

For cubic crystals 
N

a

lkh

a
dhkl 




222
 

Bragg’s Law: λ = 2dhkl sin θ and therefore N
a2

2
2

4
sin


   

 

Permitted values of N = h
2
 + k

2 + l
2
: 

 

 hkl P I F hkl P I F 

 100 1 - - 400 16 16 16 

 110 2 2 -              410, 322 17  - - 

 111 3 - 3              330, 411 18 18 - 

 200 4 4 4 331 19 - 19 

 210 5 - - 420 20 20 20 

 211 6 6 - 421 21  -   - 

  - - - - 332 22 22   - 

 220 8 8 8   -  -  -   - 

   300,221 9 - - 422 24 24 24 

 310 10  10 -               500, 430 25  -   - 

 311 11 - 11              510, 431 26 26   - 

 222 12  12 12              333, 511 27  - 27 

 320 13 - -                    -  -  -   - 

 321 14  14 -               520, 432 29  -   - 

   -  -   - - 521 30 30   - 
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H4. Neutron Diffraction – non-examinable! 

 

Neutrons can be used in a similar way to x-rays to investigate single 

crystals and powder samples. 

 

The scattering factors (known as scattering lengths) are different to 

those for x-rays because for non-magnetic atoms, the neutron scatters 

only from the atomic nucleus and so the scattering lengths are 

independent of scattering angle. 

 

The relationship between scattering length and atomic species is more 

complicated. A great advantage of neutron diffraction is that light 

elements (e.g. hydrogen and oxygen) have relatively large scattering 

amplitudes relative to heavy metal atoms, allowing their location to be 

determined more easily than with x-ray diffraction. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simulated powder patterns for hexagonal ice: 

 (top) neutron diffraction; (bottom) x-ray diffraction 
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I. Electron Microscopy and Diffraction 
 

I1. Electron Diffraction 

 

To understand the scattering of electrons from a crystal, and thus to 

interpret electron diffraction patterns, we can invoke the Ewald sphere 

construction and use Bragg’s Law just as we did to understand x-ray 

diffraction. 

 

There are however two key differences: 

 

(i) for most electron diffraction experiments the energy of the electron 

beam (typically 200-300keV) is normally far higher than that of a typical 

x-ray beam (e.g. 8keV) and so the wavelength of radiation is much 

smaller. This means that the Ewald sphere radius (=1/λ) is much larger 

for electron diffraction. (N.B. 1 eV = 1.6  10
-19

 J) 
 

 

 

 

 

 

 

 

 

 

 

 

(ii) the crystals studied by electron diffraction (and electron microscopy) 

are normally in the form of a thin film, perhaps a few millimeters in the 

plane of the film but only a few 10’s nm normal to the film plane, i.e. 

parallel to the incoming beam. 
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The sample has to be thin in the direction parallel to the incoming beam 

because electrons, being charged particles, interact very strongly with the 

atoms in the crystal. If the crystal is too thick the electrons are scattered 

many times (dynamical scattering), scattered to very high angles (even 

scattered back towards the electron source), will lose energy and not be 

transmitted into the diffraction pattern. 

 

Having such a thin film in one direction means that, effectively, the 

reciprocal lattice points are no longer simply ‘points’, but are broadened 

out into ‘rods’ in the direction of the specimen normal. 

 

The strict condition for constructive interference we saw for an infinite 

array of slits (or atoms) is relaxed and in an electron diffraction 

experiment we see intensity in a diffracted beam even if it is not exactly 

at the Bragg condition. 

 

The size of the rod in reciprocal space is proportional to the reciprocal of 

the specimen thickness, t. To a good approximation, the length of the 

‘reciprocal lattice rod’, is equal to 2/t, i.e. ±1/t above and below the 

reciprocal lattice point. 
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In fact the ‘rod’ shape is similar to that seen from diffraction from a 

single slit of width t.  

 

With such a flat Ewald sphere in an electron diffraction experiment, many 

reflections will be seen in a single diffraction pattern of fixed orientation 

and fixed (single) wavelength. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A zone axis electron diffraction pattern can be considered in terms of 

layers or Laue zones of reciprocal space, perpendicular to the zone axis: 

 

Zero Order Laue Zone (ZOLZ) 

First Order Laue Zone (FOLZ) 

etc. 

 

zero order Laue zone 

zone axis orientation 

electron beam 

zero order 
Laue zone 

Ewald sphere 
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Electron diffraction patterns can be interpreted very simply as sections of 

reciprocal space. They are recorded on 2D detectors, for example a CCD 

camera. 

 

It is relatively straightforward to determine planar spacings: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the diagram:   
L

R
2tan  

 

For electron diffraction with very small wavelengths this means that 

Bragg angles are also very small (typically <1°). Thus: 

 

 22tan     and  sin  

 

Therefore Bragg’s law can be written as:  d2   or 
d


 2  and  

 


dL

R 
 2  and  

R

L
dhkl


  

 

The quantity λL is sometimes known as the camera constant. 

 

 

2θ 

θ 

specimen 

L 

2D detector 

R 

L is known as the camera length and 

is the effective distance from 

specimen to detector. 

 

R is the distance measured on the 

detector from the origin to the 

diffracted spot.  
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There are many applications of electron diffraction in materials science. 

In the example below, diffraction patterns from mutually perpendicular 

directions of a complex alloy Ta97Te60 allow the lattice parameters to be 

measured. 
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I2. Microscopy and Image Formation 

 

The great advantage of electrons over x-rays is that an electron-optical 

lens can be placed behind the specimen and an image of the specimen can 

be formed. 

 

We can use simple ray optics developed for light microscopy to 

understand electron microscopy images. Electro-magnetic lenses can be 

considered as if they were convex lenses.  

 

First let’s remind ourselves about the action of a convex lens: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This shows a simple construction to indicate the position of the image and 

its magnification, uvM / . 

 

It also indicates the focal length of the lens, f, and the plane containing f is 

known as the back focal plane of the lens. 

 

Now consider again an array of slits, or a ‘grating’, that we now wish to 

image using a lens: 
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What determines the resolution of the image?  

 

Abbe’s theorem states that to resolve a diffraction grating with slit 

separation d then at least two beams (typically the direct beam and the 

first order diffracted beam) should enter the lens. The image is effectively 

formed by the interference of the diffracted beams and the direct beam at 

the image plane. Let’s simplify the diagram: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If α is the scattering angle for the 1
st
 order diffracted beam, then the path 

difference PQ must be equal to the wavelength λ (for constructive 

interference). 
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 p.d. = PQ = λ = dsin α 

 






sin
d  

 

 

In fact the requirement to achieve d is ‘over-fulfilled’ in the diagram 

above because the lens is collecting light scattered to an angle α below as 

well as above the optic axis. This means that, in this geometry, the 

resolution is improved by a factor of 2, so d  d/2 and therefore: 

 





sin2
d  

 

So therefore if we use radiation with wavelength λ, and collect diffracted 

rays over an angle ±α, we will be able to resolve distances d in the image, 

i.e. the limit of resolution is d. 

 

If we wish to improve the image resolution further then the object has to 

be illuminated with radiation of smaller wavelength or have a lens which 

can collect rays scattered to higher angles. 

 

Note: For optical microscopy, by filling the space between the object and 

the lens with oil of refractive index n it is possible to improve the 

resolution: 





sin2n
d   
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The quantity n sin α is called the numerical aperture, NA, of the lens.  

 

Thus ‘high resolution’ optical microscopes work with the object and lens 

almost touching to maximize α. 

 

Illustration of Abbe’s Theorem 

 

In the figure overleaf, an object has been simulated which is a series of 

discs arranged in a rectangular array limited within a diamond ‘envelope’ 

– see (a). The diffraction pattern (b) shows an array of reciprocal lattice 

points as expected. 

 

(c) If an aperture is placed to allow only the central spot through then the 

image formed (d) is a simple diamond shape with a lack of detail – there 

is no information about the periodicity of the array.  

 

(e) If the aperture is made larger to allow the first order diffracted spots 

through in the vertical direction then the periodicity is seen in that 

direction in the image (f). 

 

If the aperture is enlarged further to include the first order diffracted spots 

in the horizontal direction (g) then the array is seen in both directions (h). 
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(a) (b) 

(c) 

(e) 

(g) 

(d) 

(f) 

(h) 

object diffraction pattern 

image 

image 

image 



Course A: Atomic Structure of Materials AH114 

 

I3. Electron Microscopy 

 

Although a large aperture increases the limit of resolution, to improve 

resolution further though, we need to reduce the wavelength and for that 

we need then to use high energy electrons: 

 
Electron 

Energy 

30keV 100keV 300keV 1MeV 

Electron 

Wavelength (Å) 

0.0698 0.037 0.0197 0.0087 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus for electron microscopes we might expect a limit of resolution of 

only a few pm. However the severe aberrations of electro-magnetic lenses 

limits the usable range of angles α and the NA is typically ~0.01 (c.f. NA 

~1 for high quality optical lenses) and so the limit of resolution for 

electron microscope lenses is ~0.1nm. 

 

However this resolution enables the imaging of atomic structures directly, 

such as seen in a figure later. 

 

Imaging in the electron microscope can be performed in variety of ways 

by using an aperture in the back-focal plane of the imaging lens. 
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For example by placing an aperture around the direct beam only, you 

form a bright-field (BF) image. If an aperture is placed around a 

diffracted beam only, a dark-field (DF) image is formed – see also AP4. 

 

 

 

 

 

 

 

 

 

 

 

 

This is illustrated in the example below – taken from an aluminum alloy 

containing precipitates that give rise to extra weak reflections in the 

diffraction pattern because the precipitates have a different structure to 

the aluminium-rich matrix.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schematic pattern: weak spots 

arise only from the precipitates 

objective aperture objective aperture 

bright field (BF) imaging dark field (DF) imaging 
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If the aperture is large and placed around many beams you form a high 

resolution ‘lattice image’. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This shows ferroelectric PZT near a boundary (orange arrows) which 

separates crystal with polarization pointing down from crystal with 

polarization pointing up. If you look carefully you’ll see the slight zig-zag 

in the structure caused by the oxygen displacements change as the 

boundary is crossed. 

---------------------------------- 

We end with another Feynman quote from the same lecture in 1959: 

‘…the electron microscope is one hundred times too poor. I put this out 

as a challenge: Is there no way to make the electron microscope more 
powerful?’ 

…from the image above, we can say that we are almost there!

objective aperture 
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Appendix 1. The 2D Plane Groups 
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Appendix 2. The 32 Point Groups 

(taken from McKie and McKie) 
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Appendix 3. Complex Numbers 

 

For those not yet familiar with complex numbers, here’s a very brief 

introduction. 

 

Complex numbers have a real and imaginary component. 

 

We can write a complex number as iyxz   

 

where x and y are real numbers and i is 1 . 

 

x is known as the real part of the complex number and iy is the 

imaginary part. 

 

We can represent a complex number on an Argand diagram where the 

real part is plotted on the horizontal axis and the imaginary part on the 

vertical axis: 

 

 

 

 

 

 

 

 

 

 

 

 

The complex number can be considered like a vector and thus the ‘length’ 

or modulus of the complex number = 
22 yxr    

 

If  is the angle as shown then we can write  

 

  sincossincos irirrz   

 

By using Euler’s formula  sincos iei   we can write: 

 
irez   
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Real Axis 

Imaginary 
Axis 
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Adding complex numbers is rather like adding vectors. It is simply a 

matter of adding the real parts and adding the imaginary parts separately. 

Thus, for example: 

 

(A + iB) + (C + iD) = (A + C) + i(B + D) 

 

The complex conjugate of a complex number, symbol z*, is one which 

has the same modulus but negative angle, , i.e. 

 

   ireirirrz  sincossincos*  

 

Note that  
2* rrerezz ii   
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Appendix 4. Proof of Weiss Zone Law 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Any lattice vector rUVW lying in the plane (hkl) can be formed as a 

combination of two vectors AB and AC: 

 

ACAB   cbar WVUUVW   

 

We can write the two vectors in the plane (hkl) as 

 

ab
hk

11
AB    and   ac

hl

11
AC  

 

Thus:  

 

cbacba
lkh

WVU





  

 

Comparing left and right hand sides of the equation, it follows that  

 

)(  hU  

 

kV  
 

lW  

 

And therefore hU + kV + lW = 0 
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r[UVW] 



Course A: Atomic Structure of Materials AH124 

Glossary of Terms 

 

Alloy: A metallic substance that is composed of two or more elements. 

 

Amorphous: Irregular; having no discernible order or shape. In the 

context of solids, the molecules are randomly arranged, as in glass, rather 

than periodically arranged, as in a crystalline material. A non-crystalline 

structure. 

 

Anisotropic: Having properties that vary according to the direction of 

measurement. 

 

Atomic form factor: The amplitude of radiation scattered by a single 

atom. It varies with atomic number and with the angle of scattering. 

 

Atomic scattering factor: Same as atomic form factor 

 

Birefringence: The difference in refractive index between two permitted 

vibration directions. 

 

Body-centred unit cell: A non-primitive unit cell that is described with a 

lattice point at the centre of each unit cell. 

 

Bragg equation: The basic diffraction equation which relates interplanar 

spacings to the angle through which beams of radiation are diffracted, for 

a given wavelength of radiation. 

 

Bravais lattice: Classification of lattices based on symmetry, allowing 

for all possible lattices consistent with a given symmetry. There are 14 

Bravais lattices. 

 

Centre of symmetry: A point though which an object can be inverted (i.e. 

all x, y, z are transformed to -x, -y, -z) to bring the object into coincidence 

with itself. 

 

Centrosymmetric: Possessing a centre of symmetry. 

 

Ceramic: A compound of metallic and nonmetallic elements, in which 

the interatomic bonding is predominantly ionic. 

 

Close packed structure: A structure in which the atoms are packed 

closely together. For structures made of only one atom type, the common 
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close-packed structures are cubic close-packed and hexagonal close-

packed. 

 

Constructive interference: The combination of rays which are in phase 

and give an intense beam. 

 

Coordination number: The number of atoms forming a polyhedron 

around a central atom in a structure. 

 

Coordination polyhedron: The polyhedron (commonly a tetrahedron or 

octahedron) that can be constructed around a cation with the centres of 

the surrounding anions forming the vertices 

 

Constructive interference: The combination of rays which are in phase 

and give an intense beam. 

 

Conventional unit cell: A unit cell that is oriented in a specific way with 

respect to the symmetry elements of the crystal. The conventional cell 

may or may not be primitive. 

 

Critical radius ratio: The ratio of cation radius to anion radius for the 

condition where the surrounding anions are touching each other as well as 

the central cation. 

 

Crossed polars: Two sheets of polaroid (polariser and analyser) oriented 

at 90° to each other between which a sample is placed for optical 

examination. 

 

Crystal: A solid form of matter showing translational periodicity in three 

dimensions in its atomic arrangement. 

 

Crystal structure: The arrangement of atoms in a single crystal. 

 

Crystal system: Classification based on the symmetry of the lattice. 

There are 7 crystal systems. 

 

dhkl: The spacing between lattice planes (hkl) 

 

Destructive interference: The combination of rays which are out of 

phase, giving zero intensity. 

 

Diffraction pattern: The distribution of intensity of radiation scattered 

by an object. 
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Diffractometer: An instrument used for recording intensities of 

diffracted X-rays as a function of diffraction angle and sample orientation. 

There are many different types of diffractometers. 

 

Disordered materials: In general this term is used to refer to materials 

that lack the three-dimensional long-range periodicity of a crystalline 

substance (e.g. liquids, glasses, polymers, liquid crystals). 

 

Face-centred unit cell: A non-primitive unit cell that is described with a 

lattice point at the centre of each face of the unit cell. 

 

Ferroelectric material: One that produces domains of spontaneous 

polarization whose polar axis can be reversed in an electric field directed 

opposite to the total dipole moment of the lattice. 

 

Fractional coordinates: Set of coordinates x, y , z that define the position 

of an atom in a unit cell in terms of fractions of the unit cell lengths 

 

Glass: A solid form of matter formed by cooling a liquid sufficiently fast 

to avoid crystallisation. The arrangement of atoms in a glass does not 

exhibit periodicity, but on a short length-scale the bonding may resemble 

that found in a crystal. 

 

Glide Plane: a glide plane is symmetry operation describing how a 

reflection in a plane, followed by a translation parallel with that plane, 

may leave the crystal unchanged. 

 

Ionic bond: A primary bond arising from the electrostatic attraction 

between two oppositely charged ions. 

 

Inversion centre: Same as centre of symmetry. 

 

Isotropic: Having properties that are the same regardless of the direction 

of measurement. In the isotropic state, all directions are indistinguishable 

from each other. See also anisotropic. 

 

Lattice: An infinite array of points repeated periodically throughout 

space. The view from each lattice point is the same as from any other. 

 

Lattice parameters: The set of lengths of the edges of the unit cell, a, b 

and c, and the angles between the unit cell axes, α, β, and γ. 

 

http://en.wikipedia.org/wiki/Reflection_(mathematics)
http://en.wikipedia.org/wiki/Translation_(mathematics)
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Lattice plane: One of a set of parallel planes containing two non-parallel 

intersecting lattice vectors, defined by the Miller indices (hkl). 

 

Lattice type: Same as Bravais lattice. 

 

Lattice vector: The vector between two lattice points, defined by the 

symbol [UVW]=Ua+Vb+Wc. 

 

Liquid crystal: A thermodynamic stable phase characterized by 

anisotropy of properties without the existence of a three-dimensional 

crystal lattice, generally lying in the temperature range between the solid 

and isotropic liquid phase, hence the term mesophase. 

 

Long-range order: Order between particles correlated over large 

distances in a solid. 

 

Miller indices: A set of parallel, equally-spaced lattice planes is specified 

by the Miller indices (hkl) with reference to the unit cell, where h, k and l 

are integers. The first plane out from the origin makes intercepts of length 

a/h, b/k and c/l along the three unit cell axes. If one of the indices is zero, 

the planes are parallel to the associated axis. 

 

Microstructure The arrangement of phases and other structural features 

that make up a solid material. 

 

Mirror plane: A plane through which reflection of an object brings it 

back into coincidence with itself. 

 

Motif: The element of a structure associated with any lattice point 

 

Multiplicity: The number of equivalent lattice planes which are related 

by symmetry; important for understanding the intensities of X-ray powder 

diffraction patterns. 

 

Non-crystalline: The solid state wherein there is no long-range atomic 

order. Sometimes the terms amorphous, glassy and vitreous are used 

synonymously. 

 

Non-primitive unit cell: A unit cell that encompasses more than one 

lattice point. Lattice points will be found at the corners of the unit cell, 

and also in positions such as the centre of the unit cell or in the centres of 

some or all of the faces of the unit cell. 
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Packing efficiency: The ratio of the volume contained within the atoms 

in a crystal structure to the volume of the crystal. Put another way, it is 

the fraction of the volume of the crystal that is contained within the 

constituent atoms. 

 

Perovskite: Family of ABX3 compounds which commonly show 

displacive phase transitions by octahedral tilts or atomic displacements. 

 

Phase: a physically distinct form of a given material, when the material 

can exist as different phases under different conditions of temperature or 

pressure. Also used to refer to a homogeneous portion of a system that 

has uniform physical and chemical characteristics 

 

Phase angle: The phase difference between radiation scattered from an 

atom at the origin of a unit cell and from an atom at a general position 

within the unit cell.  

 

Polarisation: The property of electromagnetic waves, such as light, that 

describes the direction of the transverse electric field. 

 

Polarised light: Light that has passed through a sheet of polaroid and has 

a transverse electric field that vibrates in one direction only. 

 

Polymorphism: The existence of a single compound as two or more 

phase with different crystal structures stable under different conditions. 

 

Primitive unit cell: A unit cell that encompasses only one lattice point, 

i.e. a unit cell where the lattice points are only found at the corners of the 

unit cell. 

 

Radius ratio: The ratio of the radii of the cations and anions in a simple 

ionic structure, which is sometimes useful as a measure of the relative 

stabilities of different structures possible for a given material. 

 

Rotation axis: The axis, of order n, about which rotation by a given 

fraction 1/n of a complete rotation brings an object back into coincidence 

with itself. 

 

Screw Axis: a screw axis is a symmetry operation describing how a 

combination of rotation about an axis and a translation parallel to that 

axis leaves a crystal unchanged. 

 

 



Course A: Atomic Structure of Materials 

 

AH129 

Structure factor: The amplitude of radiation scattered by all atoms in a 

unit cell. It depends on (a) the fractional co-ordinates, x, y, z, of atoms in 

a unit cell and (b) diffraction geometry, as specified by the planes (hkl) 

from which the diffracted beams are said to be reflected 

 

Systematic absences: Diffracted beams from a crystal which have 

strictly zero intensity, due to repeating units of structure which scatter 

exactly out of phase with each other. They are most easily summarised in 

terms of lattice type. 

 

Short-range order: Order which implies strong correlations between the 

positions of atoms in a glass over distances of a few Å. 

 

Translational order: A condition when molecules have some 

arrangement in space. Crystals have three degrees of translational order 

(each molecule is fixed in space with an x, y, and z coordinate) and 

liquids have no translational order. 

 

Unit cell: Any parallelepiped in a lattice having lattice points at all 

corners. 

 

Unit cell parameters: see lattice parameters 
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Glossary of symbols 

a A unit cell edge length 

a Vector along the a unit cell edge 

b A unit cell edge length 

b Vector along the b unit cell edge 

c A unit cell edge length 

c Vector along the c unit cell edge 

d Interplanar spacing 

f Atomic scattering factor 

Fhkl Structure factor 

h One of the Miller indices 

I Symbol to denote a body-centred 

unit cell 

F Symbol to denote a face-centred 

unit cell 

Ihkl Intensity of diffracted beam from 

(hkl) planes 

k One of the Miller indices 

 One of the Miller indices 

m Multiplicity of lattice planes 

N Integer (= h
2
+k

2
+l

2
 for cubic 

system) 

P Symbol to denote a primitive unit 

cell 

U One of the components of a lattice 

vector 

V One of the components of a lattice 

vector 

W One of the components of a lattice 

vector 

 

 A unit cell interaxial angle 

 A unit cell interaxial angle 

 A unit cell interaxial angle 

 Phase angle  

 Wavelength  

 Angle (sometimes Bragg Angle) 
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Question Sheet 1 

1. Look at the DOITPOMS Crystallography package: 

 http://www.doitpoms.ac.uk/tlplib/crystallography3/index.php 

 Work through the section on ‘Close Packing and Packing Efficiency’

2. Determine the packing efficiency of a 2D hexagonal array of solid circles. 

 before starting the 

rest of this question sheet. 

3.  Determine the packing efficiency of a b.c.c. structure. 

4. Using a hard sphere model, determine the ideal radius ratio for an atom to fit into an 

octahedral interstice in a c.c.p. structure. 

5. Repeat the calculation for question 4 for the octahedral interstice in a b.c.c. crystal. Hint: 

consider carefully which is the nearest atom.  

6. For the ideal h.c.p. structure, show that the layer spacing, d, as defined in lectures, is 

equal to a3/2 . 

7.  In the deformation of c.c.p. and b.c.c. metals, slip (planar shearing, see figure below) 

generally occurs on the close-packed or ‘closest-packed’ planes and in close-packed 

directions. Each combination of slip plane and direction is called a slip system. How 

many slip systems are there in these metals? 
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8.  Iron is known to be able to crystallise with three different structures: α-Fe is body 

centred cubic, γ-Fe is cubic close-packed and ε-Fe is hexagonal close-packed. Lattice 

parameters quoted in the scientific literature for these three polymorphs of Fe are a = 

2.87 Å (bcc), a = 3.67 Å (ccp) and a = 2.50 Å, c = 4.02 Å (hcp). 

 a) Sketch a plan view of one unit cell of each structure, as viewed down the 

crystallographic z-axis.  

 b) Calculate the number of Fe atoms in each unit cell and the volume of each unit cell. 

Hence calculate the density of each polymorph of iron. (Look up values of Avogadro's 

number and the atomic mass of Fe in the Data Book). 
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Question Sheet 2 

1. Look at the DOITPOMS Crystallography package: 

 http://www.doitpoms.ac.uk/tlplib/crystallography3/index.php 

 Work through the section on ‘Symmetry’

 There is also a separate TLP on ‘Lattice Planes and Miller Indices’ which should be 
considered: 

, ‘Lattices’, ‘Unit Cell’  ‘Lattice Geometry’, 

  http://www.doitpoms.ac.uk/tlplib/miller_indices/index.php 

2. Consider the Escher pattern below known as ‘Angels and Devils’: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Look carefully at the pattern. The pattern has a number of symmetry elements, namely 
4-fold rotations (tetrads), 2-fold rotations (diads), mirrors and glide lines. 

(a) Indicate the position of the symmetry elements on the ‘greyed’ version (printed 
separately at the end of the question sheet) and draw on a possible unit cell. 

(b) By comparing the arrangement of symmetry elements on your annotated pattern 
with the 17 possible plane groups given in your handout, determine to which plane 
group the Escher pattern belongs.  
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3. (a) The lines AB, BC, CD, DE, EF and FA bound the fragment of a close-packed plane 

of spherical atoms shown below. Use the given axes to index the lines as lattice vectors 

[UV0]. 

(b) Using the same reference axes, and taking the origin inside the fragment, index the 
lines as planes (hk0) cutting through the plane of the diagram.  

A

B

CD

E

F

x

y

 

 

4. Index the planes shown intersecting the surfaces of the following unit cells: 

x

y

z
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5. Sketch, on the surfaces of the following unit cells, the intersections of the lattice planes 
(213), (1

 

22), (20

 

1) and (020), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Cementite (Fe3

 (a) Determine the interplanar spacing, d, for the following planes: (101), (001), (111) 
and (202). 

C) is found in many different steels. It has an orthorhombic structure 
with lattice parameters a = 4.52 Å, b = 5.08 Å, c = 6.74 Å. 

 (b) Determine the angles α, β, γ between the normal to the (111) plane and the three 
crystal axes. 

 

7. (a) Which of the following directions, if any, lie parallel to the plane (115) ?  

 [110], [732], ]013[ , ]123[ . 

 (b) Which of the following planes, if any, lie parallel to the direction ]111[  ? 

 (113), (321), )214( , )111( . 

x 

y 

z 
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Hand the annotated version of this pattern to your supervisor with the rest of your answers. 
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Question Sheet 3 

1. Look at the DOITPOMS Crystallography package: 

 http://www.doitpoms.ac.uk/tlplib/crystallography3/index.php 

 Work through the section on ‘Crystal Systems’ before starting the rest of this question 

sheet. 

 

2. Ag2O is cubic with the following atomic positions in the unit cell: 

 Ag:  ¼ ¼ ¾   ¾ ¾ ¾   ¾ ¼ ¼   ¼ ¾ ¼   

 O:  0 0 0   ½ ½ ½   

(a) Draw a plan of a block of 2 x 2 unit cells viewed parallel to [001] and mark the 

heights of the atoms on your plan. 

(b) Describe the shape of the co-ordination polyhedra of oxygen around silver and silver 

around oxygen. 

(c) What is the lattice type? 

(d) How many formula units of Ag2O are there in the motif? 

 

3.  The Bragg angles (θ) corresponding to the (100) and (001) planes from an hexagonal 

crystal, measured using Cu Kα radiation (λ = 1.542 Å) were found to be 8.68° and 6.82°, 

respectively. Calculate the lattice parameters. 

 

4.  X-ray diffraction data were collected from a natural sample of galena, PbS.  The 

material was found to be cubic, with four formula units per unit cell.  The first eight 

lines in an X-ray powder diffraction trace corresponded to the following reflections: 

111, 200, 220, 311, 222, 400, 331, 420. The ratio of the intensities for the 420 and 331 

reflections, I420 : I331 , was measured as 1.7 : 1.  

 Use these observations to determine whether galena has a structure similar to caesium 

chloride, sodium chloride or zinc sulphide (zinc blende). [Atomic form factors at 

diffraction angles comparable with those of the 420 and 331 reflections are: fPb = 46.4, 

fS = 6.8.] 

 Hint: Consider possible absent reflections and determine expressions for the structure 

factors for each of the possible structures using information in the Data Book. 

 [Note: the zinc blende structure is also known as the sphalerite structure.] 
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5. The figure below is a magnified version of the centre of the famous Photo 51 x-ray 
micrograph from which Crick and Watson determined the structure of DNA. If you look 
closely, the x-ray photograph is composed of a ‘X’ of scattered intensity which is 
broken up into horizontal layers (arrowed).  

 

 

 

 

 

 

 

 

 

 

 Importantly, the 4th

 

 ‘layer line’ is missing, i.e. it has zero intensity and the first 3 lines 
have the pattern: weak, strong, strong. DNA is composed of two helices running in 
opposite direction of equal wavelength or pitch, p, but with an offset of 3/8 of the pitch 
(see below left). We can simplify this into a one-dimensional schematic (below right):  
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Consider DNA as a 1-D crystal with a lattice of length p and a motif of 2 identical 
‘atoms’ (approximating the two DNA strands) with ‘atomic’ form factor f separated by 
3/8 p (as shown on the figure above on the right)  

(a) Write down a general expression for the structure factor Fh where 

(b) Draw amplitude-phase diagrams showing the individual contributions from the two 
‘atoms’ and the resultant F

h is the order of 
the layer line, i.e. the reflection, h.  

h 

(c) Determine the scattered intensity I

( h = 1, 2, 3, 4 ). 

h 

 

for h = 1, 2, 3, 4 and confirm the pattern: weak, 
strong, strong, zero. 



Qu. Sheet 4 MATERIALS SCIENCE AQ4 
 Course A: Atomic Structure of Materials 

 MT13 

Question Sheet 4 

1. Look at the DOITPOMS X-ray Diffraction package: 

 http://www.doitpoms.ac.uk/tlplib/xray-diffraction/index.php 

 Work through the package before starting the rest of this question sheet. 

2.  Iron (b.c.c. a = 2.866Å) is irradiated with Cu Kα x-rays (λ = 1.542Å). Find the indices 

{hkl}of planes which give rise to x-ray reflections.  

3.  Barium titanate (BaTiO3) undergoes a phase transition at around 120° C from a cubic 

phase (above 120° C) to a tetragonal phase (below 120° C). Figure 1 (see end of the 

question sheet) shows two x-ray diffractometer traces for BaTiO3

(a) By considering the indexing of the peaks, determine the lattice types of the two 

structural states of barium titanate. Why are there more reflections in the low 

temperature trace? 

 at 150° C and at 20° 

C. The wavelength of the x-rays used is λ = 1.5405Å.  

(b) What are the multiplicities for planes of the form {220} in the cubic system and 

{220}, {022} of the tetragonal system? Explain the splitting of the line at close to 66° 

2θ in the tetragonal diffraction pattern. 

(c) Use the 2θ values for the lines close to 66° 2θ to calculate the lattice parameters of 

the cubic and tetragonal forms. 

4. Sketch the 2D reciprocal lattice section containing a* and b* for a cubic crystal with (a) 

a P lattice, (b) an F lattice, and (c) an I lattice. 

 At temperatures above 400° C crystals of Cu3Au have a disordered distribution of Cu 

and Au atoms on the sites of a c.c.p. array with a statistically cubic F lattice. Holding the 

crystals at 280° C causes ordering of the Cu and Au atoms, and the lattice type changes 

to P. How might you recognise the onset of ordering in a thin specimen of Cu3

 

Au held 

in a heating stage of an electron microscope (electron beam parallel to [001]) if the 

sample temperature was gradually reduced from above 400° C? 
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5. During an x-ray investigation of indium (tetragonal cell, a = 3.25Å, c = 4.95Å, I lattice), 

a single crystal was held in a fixed position relative to the x-ray beam or slowly rotated 

in the beam. Draw to scale the a* - c* section of the reciprocal lattice of indium and use 

the Ewald sphere construction to predict the indices of reflections of the type h0l which 

could be recorded in the following experiments:  

(a) The crystal is held stationary with its [ 1 00] direction parallel to an incoming beam 

(i.e. with the [100] direction pointing towards the x-ray source) of Co Kα x-rays (λ = 

1.789Å). 

(b) The crystal is then rotated slowly through 25° about its [010] axis, followed by a slow 

rotation through 50° in the opposite direction (i.e. [ 1 00] reaches limits of ±25° from the 

direction of the x-ray beam). 

(c) The crystal is held in its original position, described in (a), but white radiation 

(wavelength range 1.0 – 2.0 Å) is used instead of Co Kα radiation. 
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Figure 1.

(1) BaTiO

 X-ray diffractometer traces for question 3. 

3 at 150°C 

 

The 022 line is at 2θ = 65.7789° 

 

(2) BaTiO3 at 20°C 

 

The 022 line is at 2θ = 65.7453° 

The 220 line is at 2θ = 66.1506° 
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